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Abstract One way to use a crop germplasm collection

directly to map QTLs without using line-crossing experi-

ments is the whole genome association mapping. A major

problem with association mapping is the presence of pop-

ulation structure, which can lead to both false positives and

failure to detect genuine associations (i.e., false negatives).

Particularly in highly selfing species such as Asian culti-

vated rice, high levels of population structure are expected

and therefore the efficiency of association mapping re-

mains almost unknown. Here, we propose an approach that

combines a Bayesian method for mapping multiple QTLs

with a regression method that directly incorporates esti-

mates of population structure. That is, the effects due to

both multiple QTLs and population structure were included

in our statistical model. We evaluated the efficiency of our

approach in simulated- and real-trait analyses of a rice

germplasm collection. Simulation analyses based on real

marker data showed that our model could suppress both

false-positive and false-negative rates and the error of

estimation of genetic effects over single QTL models,

indicating that our model has statistically desirable attri-

butes over single QTL models. As real traits, we analyzed

the size and shape of milled rice grains and found signifi-

cant markers that may be linked to QTLs reported previ-

ously. Association mapping should have good prospects in

highly selfing species such as rice if proper methods are

adopted. Our approach will be useful for the whole genome

association mapping of various selfing crop species.

Introduction

To enable efficient management and utilization of crop

genetic resources, systematic germplasm collections, such

as core collections (Brown 1989), have been developed and

maintained in various crop species. Such collections aim to

capture most of the genetic variability in entire genetic

resources and thus harbor large amounts of genetic varia-

tion. Although such variations in agronomic traits as well

as morphological and physiological ones have been eval-

uated and accumulated for these collections, the quantita-

tive trait loci (QTLs) responsible for the variations are

largely unexplored, mainly because of a lack of appropriate

statistical methods. QTL mapping based on line-crossing

experiments may be one of the most efficient methods of

exploring QTLs. To harvest entire variations in collections

by this method, however, one might need to assess a large

number of segregating families that would include most of
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the accessions in the collection as parents. In practice, this

would be quite difficult in terms of space, time, and funds.

One way to use accessions in a collection directly to map

QTLs without using line-crossing experiments is association

mapping, or linkage-disequilibrium (LD) mapping. Asso-

ciation mapping has been used to dissect the genetic basis of

human disease (e.g. Kerem et al. 1989; Corder et al. 1994),

and has recently been extended to plants (Thornsberry et al.

2001; Parisseaux and Bernardo 2004; Kraakman et al. 2004;

Zhang et al. 2005a, b; Yu et al. 2006; Breseghello and

Sorrels 2006). One major obstacle in applying association

mapping to crop species is that the complex breeding his-

tories of many important crops have created complex pop-

ulation structures within the germplasm (Flint-Garcia et al.

2003). The presence of population structure and unequal

distribution of alleles within subpopulations can result in

nonfunctional, spurious associations between a phenotype

and unlinked candidate gene (Knowler et al. 1988; Lander

and Schork 1994). To deal with this problem, several

methods have been proposed. Pritchard et al. (2000b) pro-

posed a method of testing association that conditions on the

inferred ancestries of individuals. Ancestries were inferred

by a Bayesian method proposed by Pritchard et al. (2000a).

Thornsberry et al. (2001) extended this method to deal with

a quantitative trait, and studied a candidate gene for the

control of flowering time in maize. Recently, Yu et al.

(2006) proposed a mixed-linear-model method in which

effects caused by population structure and background

polygenic effects are included as independent variables, and

demonstrated that their method can control both false-

positive and false-negative rates.

The methods described above can deal with the effect of

population structure, but they do not simultaneously take

multiple QTLs into account. For a complex trait governed

by multiple QTLs, it is reasonable to include the effects of

multiple QTLs in the model in order to correctly estimate

the number, locations, and genetic effects of QTLs. Re-

cently, Bayesian methods based on the Markov chain

Monte Carlo (MCMC) algorithm have been developed for

mapping multiple QTLs at the same time (e.g. Satagopan

et al. 1996; Uimari and Hoeschele 1997; Sillanpää and

Arjas 1998, 1999; Yi et al. 2003; Kilpikari and Sillanpää

2003; Yi 2004; Sillanpää and Bhattacharjee 2005). Among

these methods, those based on Bayesian variable selection

(Yi et al. 2003; Yi 2004; Sillanpää and Bhattacharjee 2005)

are advantageous in that they can be implemented via a

simple and easy-to-use Gibbs sampler. As proposed by

Kilpikari and Sillanpää (2003), these Bayesian methods

can be extended to the whole genome association mapping.

Their practical application to the whole genome association

mapping, however, has been rarely attempted.

Asian cultivated rice, Oryza sativa L., is an important

crop and staple food for half of the world’s population.

Rice landraces show a broader range of phenotypic varia-

tion than do modern rice cultivars. Among the variations

left unused in modern cultivars, there are many that would

be valuable for breeding programs. To use these variations

more actively in future rice breeding, it is necessary to

establish an efficient statistical method for detecting the

QTLs responsible for the variations. As rice is a highly

selfing species and is expected to have high levels of

population structure because of the nature of its breeding

history, it remains almost unknown whether the association

mapping approach would be efficient for mapping QTLs in

rice (Yu et al. 2006).

We propose an approach that combines the Bayesian

variable selection method for mapping multiple QTLs with

an association mapping method that directly incorporates

estimates of population structure. We evaluated the effi-

ciency of our approach in the whole genome association

mapping of a rice germplasm collection. We performed

simulation analyses based on real marker data. We also

performed analyses of real trait data, i.e. the size and shape

of milled rice grains, which are typical traits that show

moderate to high heritability. Finally, we discuss the

prospects for the application of our approach to the whole

genome association mapping of germplasm collections.

Materials and methods

Plant materials

Recently, 332 rice accessions were selected as represen-

tatives of the rice germplasm maintained at the National

Institute of Agrobiological Sciences (NIAS) Genebank and

were genotyped for 179 restriction fragment length poly-

morphism (RFLP) markers (Kojima et al. 2005). The 332

accessions originate from 23 countries and include 281

landraces and 51 modern cultivars (Table 1 in Kojima

et al. 2005). The 179 RFLP markers have been located on

the high-density genetic linkage map of rice (Kurata et al.

1994; Harushima et al. 1998) and distributed as landmarker

RFLP sets from the NIAS DNA Bank (http://www.dna.

affrc.go.jp/). We used the 332 accessions in this study.

Among the 332 accessions, the alleles of two reference

cultivars Nipponbare (ssp. japonica) and Kasalath (ssp.

indica) dominated in most of the 179 RFLP markers. The

number of alleles observed ranged from 2 to 8 (mean 3.1)

per locus (Kojima et al. 2005). The average frequencies of

the Nipponbare and Kasalath alleles over all markers were

0.53 and 0.37, respectively (Kojima et al. 2005).

Population structure

The population structure among the 332 accessions was

inferred by model-based Bayesian clustering analysis with
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the 179 RFLP markers by using the program Structure

(Pritchard et al. 2000a). Because rice is a highly selfing

species and the accessions were almost homozygous, we

treated each accession as a haploid in the model of the

Bayesian clustering analysis. MCMC cycles were repeated

1 · 106 times after 1 · 104 cycles of a burn-in period.

In the analyses, we tested the admixture models with two to

eight populations. The model in which the number of

populations (J) was six showed higher log-likelihood

values than the other models. Thus, we chose J = 6 and

obtained estimates for the proportion of accession i’s

genome that originated from population j, qij. The Q matrix

whose (i, j)-th element was qij was further incorporated into

the model of Bayesian association mapping of multiple

QTLs.

Statistical model

We considered only marker positions as putative QTLs in

our association mapping method. Each marker position k (k

= 1, 2, ..., K) has its own indicator variable ck, where the

value one (ck = 1) corresponds to the case in which the

marker is included in the model as a QTL representative,

and the value zero (ck = 0) implies exclusion. Here, we

considered the marker loci as bi-allelic. Each marker po-

sition has its own genetic effect coefficient bk, where the

effects associated with two homozygous genotypes of

marker k are bk and – bk, respectively. The observed

phenotypic value of individual i (i = 1, 2, ..., N), yi, can

then be described by the linear model,

yi ¼
XJ

j¼1

qijaj þ
XK

k¼1

xikckbk þ ei; ð1Þ

where qij is the (i, j)-th element of matrix Q, aj is the

population effect associated with population j (j = 1, 2, ...,

J), xik denotes the genotype of marker k for individual i,

and is defined by 1 or –1 for the two genotypes, and ei is

the residual error assumed to follow N(0, re
2). Because rice

is a highly selfing species, the dominance effect was not

included. Epistatic effects can be included in the model

theoretically, but we excluded them for simplicity. The

model (1) can be formulated in matrix notation as

y ¼ Qaþ Xgþ e; ð2Þ

where y is an N · 1 vector whose i-th element is yi, a is a

J · 1 vector whose j-th element is aj, X is an N · K matrix

whose (i, k)-th element is xik, g is a K · 1 vector whose k-th

element is ck bk, and e is an N · 1 vector whose i-th ele-

ment is ei.

MCMC algorithm for parameter estimation

Our method is based on a variable selection method

developed by Kuo and Mallick (1998). The method is

similar to, but simpler than, the method developed by

George and McCulloch (1993), which has been utilized in

multiple QTL mapping (Yi et al. 2003; Yi 2004).

Prior and posterior distribution of parameters

In our method, we considered the prior distributions of the

parameters b; ck; and re
2 as

b � Nð0; Ir2
bÞ;

ck � Bð1; pkÞ;

and

r2
e � tes2

ev
�2
te
;

where rb
2, pk, te, and se

2 are hyperparameters for the dis-

tributions. We considered a flat prior (i.e., an improper

uniform distribution) for the parameter a: That is,

pðaÞ / constant:

Now, let

X� ¼ ½c1x1; . . . ; cKxK �; ð3Þ

where X = [x1, ...,xK ]. Then, Eq. 2 can be written as

y ¼ Qaþ X�bþ e:

Here, let

Qaþ X�b ¼Wh;

R ¼ 0 0
0 Ir2

e=r
2
b

� �
; ð4Þ

C ¼WTWþ R; ð5Þ

and

r ¼WTy; ð6Þ

where

W ¼ ½Q X�� ð7Þ

and h ¼ ½aT; bT�T: Then the conditional posterior

distribution of the i-th element of h is

hijh�i; c; r
2
e ; y � Nð~hi; r2

e=ci;iÞ; ð8Þ
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where c is a vector whose k-th element is ck;
~hi ¼

ðri � Ci;�ih�iÞ=ci;i; ci;i is the i-th diagonal element of the

matrix C, ri is the i-th element of the vector r, Ci, –i is a row

vector obtained by deleting element i from the i-th row of

the matrix C, and h�i is a vector obtained by element i from

the vector h (Sorensen and Gianola 2002).

The fully conditional posterior distribution of re
2 is given

by

r2
e jh; c; y � ~te~s

2
ev
�2
~te
; ð9Þ

where ~te ¼ nþ te and ~s2
e ¼ ½ðy�WhÞTðy�WhÞþ

~tes2
e �=~te:

The fully conditional posterior distribution of ck is given

by

ckja; b; c�k; r
2
e ; y � Bð1; ~pkÞ; ð10Þ

where c�k is a vector obtained by element k from the vector

c; ~pk ¼ ak=ðak þ bkÞ;

ak ¼ pk exp � 1

2r2
e

ðy�Qa� Xg�kÞ
Tðy�Qa� Xg�kÞ

� �

ð11Þ

bk¼ð1�pkÞexp � 1

2r2
e

ðy�Qa�Xg��k Þ
Tðy�Qa�Xg��k Þ

� �
:

ð12Þ

The vector g�k in Eq. 11 is the column vector of g with the

k-th entry replaced by bk. Similarly, g��k in Eq. 12 is ob-

tained from g with the k-th entry replaced by 0.

MCMC sampling

On the basis of the above equations for prior and posterior

distributions, we can use the Gibbs sampler to generate

MCMC samples from the posterior distribution of the

model parameters. In the sampling, we set hyperparameters

for the prior distributions as rb
2 = 16, pk = 0.5, te = – 2, and

se
2 = 0. The hyperparameter rb

2 was determined by evalu-

ating the influence of rb
2 on the MCMC estimation with

three different settings (i.e., rb
2 = 1, 16, or 100), as de-

scribed in the Results. Setting the initial values of the

parameters as r2
e ¼ 1; a ¼ 0; b ¼ 0; and c ¼ 0; the Gibbs

sampler proceeds as follows:

1. Update W and R with Eqs. 4 and 7, and then update C

and r with Eqs. 5 and 6.

2. Sample a and b ði.e., hÞ from the full conditional

posterior distribution described in Eq. 8.

3. Sample re
2 from the full conditional posterior distri-

bution described in Eq. 9.

4. Sample c from the full conditional posterior distribu-

tion described in Eq. 10.

The above process was repeated many times (see ‘‘Data

analysis procedure’’) to obtain MCMC samples.

Simulated datasets

In our simulation studies, we used simulated datasets with

the 332 rice accessions. We used the observed genotypes of

179 RFLP markers of the 332 rice accessions to generate the

simulated datasets. The marker genotypes remained the

same as those in the real data. We then simulated 10 QTLs at

10 different positions randomly selected from the 179 RFLP

markers. We simulated the genotypes of the QTLs according

to the RFLP markers at the same positions. For half (i.e.,

five) of the QTLs, we simulated the QTL genotype as QQ if

the marker genotype was homozygous for the Nipponbare

allele, and as qq otherwise. For the other half of the QTLs,

we simulated the QTL genotype in the opposite way (i.e., as

qq if the marker genotype was homozygous for the Nip-

ponbare allele, and as QQ otherwise). We then simulated the

genotypic values of the QTLs according to the true param-

eter values. The true parameter values of the QTL were set as

0.5 for the QQ genotype and –0.5 for the qq genotype. Next,

we simulated a residual variance set at re
2 = 1 to generate the

phenotypic values of all the accessions. Finally, we simu-

lated population effects and added them to the phenotypic

values as follows. First, we calculated the phenotypic vari-

ance ry
2 at this point. Next, we sampled the population effect

aj (j = 1, 2, ..., J) from N(0, 0.25ry
2). Then, we added the

population effect aj to the phenotypic value of accession i,

weighted by qij. The proportion of variance due to popula-

tion effect was scaled as 20% (=0.25/1.25), reflecting pop-

ulation effects estimated from the real datasets (see Results).

The process described above was performed 100 times to

generate 100 simulated datasets.

Real dataset

Of the 332 rice accessions, 296 were cultivated in an

experimental field at NIAS (Tsukuba, Ibaraki, Japan) in the

2003 cropping season and were used in the real-dataset

study. Six milled rice grains were randomly selected from

each accession and photographed by digital camera (EOS

10D, Canon, Japan) at 0.002 mm/pixel resolution. The

length (LEN) and width (WID) of the grains in millimeters

were measured by image analysis. The length to width ratio

(LWR), which represents grain shape, was given by LEN/

WID. For each of these traits, first, we performed a one-

way ANOVA to test the variation among accessions. Then,

the average for the six grains was used as the phenotypic

value of each accession.
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Data analysis procedure

In our model, we considered the marker loci to be bi-

allelic. As described above, in our data, the Nipponbare

and Kasalath alleles dominated among the 332 accessions

at most loci. Thus, in the association mapping analyses, we

regarded all loci as bi-allelic by scoring them by the

presence (1) or absence (–1) of the Nipponbare allele.

For each dataset, MCMC cycles were repeated 1.5 · 105

times, and the first 5 · 104 cycles (burn-in) were not used

for estimating the parameter values. Sampling was carried

out every ten cycles to reduce serial correlation, so that the

total number of samples kept was 1 · 104. This sampling

scheme was based on the evaluation of the convergence of

MCMC cycles using QTL occupancy probability (Heath

1997; Uimari and Sillanpää 2001; Hayashi and Awata

2005), as described in the Results.

We regarded a marker as significant when the mean of

the posterior distribution of ck was larger than a specified

threshold. Two different thresholds (0.5 and 0.9) were

tested. That is, a marker was regarded as significant when it

was included in the model as a QTL representative (i.e.,

ck = 1) in over half (in the case of the 0.5 threshold) or 90%

(in the case of the 0.9 threshold) of MCMC samples. In the

following sentences, we refer the thresholds of 0.5 and 0.9

as ‘moderate’ and ‘strict’ thresholds, respectively.

For the simulated datasets, we also performed analyses

based on the following reduced models, as well as on the

full model described in Eq. 1:

Model R1: Single QTL model without population

effects. The model equation was

yi ¼ lþ xikbk þ ei; ð13Þ

where l was the overall mean.

Model R2: Single QTL model with population effects.

The model equation was

yi ¼
XJ

j¼1

qijaj þ xikbk þ ei: ð14Þ

Model R3: Multiple QTL model without population

effects. The model equation was

yi ¼ lþ
XK

k¼1

xikckbk þ ei: ð15Þ

Parameters in the models R1 and R2 could be estimated by

simple regression analysis and multiple linear regression

analysis, respectively. For both models, the statistical sig-

nificance of each marker could be determined by t test for the

significance of the regression coefficient. We regarded a

marker as significant when the P value was less than 0.001.

Parameters in model R3 could be estimated in the same way

as in the full model. In the MCMC sampling, we considered

a flat prior for the parameter l. The significance of each

marker was determined as in the case of the full model.

To compare the performances (i.e., the accuracies of

estimation) of the full and reduced models, we calculated

the following indices for each model in each simulated

dataset:

False-negative rate (FNR):

FNR ¼ nfn

ntp þ nfn

;

where ntp was the number of loci regarded as significant

when they were QTLs (i.e., the number of true positives)

and nfn was the number of loci mistakenly regarded as non-

significant when in fact they were QTLs (i.e., the number

of false negatives).

False-positive rate (FPR):

FPR ¼ nfp

nfp þ ntn

;

where nfp was the number of loci mistakenly regarded as

significant when in fact they were not QTLs (i.e., the

number of false positives), and ntn was the number of loci

regarded as non-significant when they were not QTLs (i.e.,

the number of true negatives).

False-discovery rate (FDR):

FDR ¼ nfp

nfp þ ntp

:

We also calculated the following index for each model

using all simulated datasets.

The root-mean-square error (RMSE) between the esti-

mated and true values of the genetic effect of the QTL,

scaled by the true value:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

D

XN

i

XK

k

dk;i

b̂k;i � bk;i

bk;i

 !2
vuut ;

where N is the number of simulated datasets. b̂k;i and bk,i

are the estimate and true value of the genetic effect of the

k-th marker locus in the i-th dataset, respectively. dk,i is an

indicator variable in which the value one (i.e., dk,i = 1)

corresponds to the case in which the k-th locus is a true

positive in the i-th dataset, and the value zero (i.e., dk,i = 0)

corresponds to the remainder of possibilities (i.e., the k-th

locus is a false negative, a false positive, or a true nega-

tive). D is the number of true positives over all simulated

datasets; that is, this index is the RMSE of true positives

over all simulated datasets.
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For the real datasets, we also calculated the expected

FDR (Benjamini and Hochberg 1995) as follows. First, P

values were calculated for all K marker loci under the null

hypothesis ‘‘there is no QTL at the specified locus’’. Next,

we determined the largest P value, Pmax, among the P

values of all np significant loci. Finally, the expected FDR

(EFDR) was calculated as

EFDR ¼ KPmax

np
:

To determine the P value under the null hypothesis, we

empirically obtained the null distribution of the mean of

the posterior distribution of ck from the results of simu-

lation analyses with the full model. That is, we gathered

16,900 values (169 markers · 100 simulated datasets) of

the mean of the posterior distribution of ck of markers

that did not have a QTL in the simulation analyses, and

we considered them as an empirical distribution of the

mean of the posterior distribution of ck. We used this

empirical distribution as the null distribution, and we

determined P values corresponding to the means of the

posterior distribution of ck of all marker loci in the real

data analyses.

Results

Simulated data analysis

The mixing property of the MCMC and the convergence of

MCMC estimation were evaluated by analyzing one sim-

ulated dataset with the full model. The number of cycles

required for the convergence of MCMC estimation was

evaluated on the basis of a plot of cumulative QTL occu-

pation probabilities (Fig. 1b) as a function of cycle num-

ber, that is, Pr([number of QTLs] £ l | [cycle number] = k)

(where 10 £ l £ 18, 0 £ k £ 1.5 · 105, respectively) fol-

lowing Heath (1997). The MCMC mixed well between

models with different numbers of QTLs (Fig. 1a), and the

cumulative QTL occupation probabilities became stable by

the 5 · 104 th cycle (Fig. 1b). Analysis of the same dataset

with model R3 revealed the same tendency (data not

shown). Thus, we determined that a chain of 1.5 · 105
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cycles and a burn-in period of 5 · 104 cycles were suffi-

cient to achieve convergence of MCMC estimation.

To evaluate the influence of the prior variance of a QTL

effect (i.e., rb
2) on the MCMC estimation, we analyzed one

simulated dataset with the full model by setting rb
2 as 1, 16,

or 100. Although the mean of the posterior distribution of

ck was generally smaller for larger rb
2 (i.e., the mean of the

posterior distribution of ck was 0.22, 0.10, and 0.07 on

average for rb
2 = 1, 16, and 100, respectively), the signifi-

cance of each marker under the strict threshold was nearly

identical among the three settings (i.e., discordance be-

tween the settings was observed in only 2 out of 179

markers). The mean of the posterior distribution of bk was

highly correlated between settings (i.e., r = 0.94 for

rb
2 = 16 vs. 1, and r = 0.98 for rb

2 = 16 vs. 100). These

results indicate that the prior variance of a QTL effect did

not have a large influence on the MCMC estimation.

Therefore, we set rb
2 as 16 in the subsequent analyses.

In the 100 simulated datasets, the mean proportion of

phenotypic variance explained by each QTL (i.e., herita-

bility) was 0.085, and the mean joint heritability of all

QTLs was 0.472 (Table 1).

The histograms in Fig. 2 show the numbers of simulated

datasets (out of 100) that fell into specified intervals for

FNR, FPR, and FDR. For FNR, the full model with the

moderate threshold (i.e., 0.5) tended to show smaller values

than the full model with the strict threshold (i.e., 0.9) and

models R1, R2, and R3 (Fig. 2a). In increasing order, the

average FNR was smallest in the full model with the mod-

erate threshold, followed by model R3 with the moderate

threshold, the full model with the strict threshold, model R3

with the strict threshold, and model R1 (Table 2). The

average FNR of the full model with the strict threshold was a

little smaller than those of models R1 and R2.

For FPR, model R1 tended to show considerably larger

values than the other models (Fig. 2b). The average FPR of

model R1 reached 45%, whereas the average FPR of the

other models was less than 2% (Table 2). In increasing

order, the average FPR was smallest in the full model with

the strict threshold, followed by model R3 with the strict

threshold, the full model with the moderate threshold,

model R2, and model R3 with the moderate threshold.

For FDR, model R1 tended to show considerably larger

values than the other models (Fig. 2c). In model R1, 75 out

of 100 datasets had FDRs greater than 90%. In contrast, in

the full model with the strict threshold, 91 out of 100

datasets had FDRs equal to 0%. The average FDR of model

R1 was as high as 89%, whereas the average FDR of the

full model with the strict threshold was less than 2% (Ta-

ble 2). In increasing order, the average FDR was smallest

in the full model with the strict threshold, followed by

model R3 with the strict threshold, the full model with the

moderate threshold, model R2, and model R3 with the

moderate threshold.

To evaluate the accuracy of our estimates of genetic

effects, we also calculated the RMSE for accurately de-

tected QTLs (i.e., true positives). In increasing order, the

RMSE was smallest in the full model with the strict

threshold, the full model with the moderate threshold,

model R3 with the strict threshold, model R3 with the

moderate threshold, and model R2 (Table 2). The RMSE

of model R1 was about three times those of the other

models.

Real data analysis

ANOVA revealed that the differences between accessions

were highly significant (P < 0.001) for all traits, suggesting

that both the size and shape of the milled rice grains were

heritable. Association mapping with the full model showed

that the proportion of variance due to population effects of

LEN, WID, and LWR was 4.35, 41.0, and 7.97%, respec-

tively. With the moderate threshold (i.e., 0.5), we found

six, three, and eight significant markers for LEN, WID, and

LWR, respectively (Fig. 3). With this threshold, the

EFDRs for LEN, WID, and LWR were 13.5, 8.83, and

11.0%, respectively. Four markers were significant for both

LEN and LWR, whereas one was significant for both WID

and LWR. No overlap of significant markers was observed

between LEN and WID. With the strict threshold (i.e., 0.9),

we found three, two, and one significant markers for LEN,

WID, and LWR, respectively (Table 3). With this thresh-

old, the EFDRs for LEN, WID, and LWR were 2.12, 1.06,

Table 1 Heritability of each QTL and joint heritability of all QTLs

in 100 simulated datasets

Value

Heritability of each QTLa

Min. 0.002

Mean 0.085

Max. 0.155

SD 0.031

Joint heritability of all QTLsb

Min. 0.228

Mean 0.472

Max. 0.831

SD 0.126

a Proportion of phenotypic variance explained by each QTL (i.e.,

heritability of each QTL). Minimum (Min.), mean, maximum (Max.),

and standard deviation (SD) were calculated over 1,000 QTLs (i.e., 10

QTLs · 100 simulated datasets)
b Proportion of phenotypic variance explained by all QTLs (i.e., joint

heritability of all QTLs). Minimum (Min.), mean, maximum (Max.),

and standard deviation (SD) were calculated over 100 simulated

datasets
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and 3.18%, respectively. For LEN, the three significant

markers were found on chromosomes 3, 5, and 11. For

WID, the two significant markers were found on chromo-

somes 1 and 5. The one significant marker detected for

LWR was identical to one detected on chromosome 5 for

LEN. For LEN, the estimated effects of the significant

markers were all negative, indicating that the allele linked

to the Nipponbare allele shortened the length of the rice

grains. For WID, one significant marker showed a positive

effect and one showed a negative effect. For LWR, the

significant marker showed a negative effect (as expected

from its negative effect in LEN).

Table 2 False-negative, false-positive, and false-discovery rates and root-mean-square error between estimated and true values of QTL effects

Model R1 R2 R3 (M) R3 (S) Full (M) Full (S)

Average FNR (%)a 44.7 44.9 24.1 40.2 19.4 37.1

Average FPR (%)b 45.7 0.734 1.25 0.166 0.509 0.0533

Average FDR (%)c 89.0 16.5 20.5 4.56 8.97 1.23

RMSE (%)d 96.1 32.2 26.8 26.8 24.1 24.0

R1 Single QTL model ignoring effects due to population structure, R2 single QTL model considering effects due to population structure, R3 (M)
multiple QTL model ignoring effects due to population structure with a moderate (i.e., 0.5) threshold, R3 (S) multiple QTL model ignoring

effects due to population structure with a strict (i.e., 0.9) threshold; Full (M) multiple QTL model considering effects due to population structure

with a moderate threshold, Full (S) multiple QTL model considering effects due to population structure with a strict threshold
a Average false-negative rate (%). The average was calculated over 100 simulated datasets
b Average false-positive rate (%)
c Average false-discovery rate (%)
d Root-mean-square error between estimated and true values of genetic effects of false-positive QTL, scaled by true values
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Fig. 2 Histograms of a false-negative rate (FNR), b false-positive

rate (FPR), and c false-discovery rate (FDR), obtained from 100

simulated datasets generated by using real marker data. Each

simulated dataset was analyzed by different statistical models, and

FNR, FPR, and FDR were calculated individually for each model.

‘Model R1’ is a single QTL model ignoring population structure.

‘Model R2’ is a single QTL model considering population structure.

‘Model R3’ is a multiple QTL model ignoring population structure.

‘Full Model’ is a multiple QTL model considering population

structure. For ‘Model R3’ and ‘Full Model’, significant markers were

decided on two different thresholds, 0.5 and 0.9. For details, see text
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Discussion

In association mapping, it is crucial to control for the false

positives caused by population structure as well as to en-

hance statistical power in detecting QTLs (i.e., control for

false negatives). Our simulation studies indicated that the

single QTL model ignoring population structure (i.e.,

model R1) induced false positives more commonly than the

other models (i.e., the full model and models R2 and R3).

The average FPR and FDR of model R1 were over 40 and

80%, respectively, suggesting that a single QTL model that

ignores population structure is useless in association

mapping of the rice germplasm collection. Moreover, the

error of estimation of genetic effects (i.e., RMSE) of model

R1 was about three times those of the other models. The

results indicate that effects due to population structure
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Fig. 3 Mean of posterior distributions of ck of 179 RFLP markers,

estimated for the length (circles), width (triangles), and length to

width ratio (crosses) of milled rice grains. Each marker position k
(k = 1, 2, ..., K) has its own indicator variable ck, where the value one

(ck = 1) corresponds to the case in which the marker is included in

the model as a QTL representative, and the value zero (ck = 0) implies

exclusion. Mean of posterior distributions of ck were plotted against

marker locations estimated on the genetic linkage map constructed by

Kurata et al. (1994)
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should be carefully taken into account when complex

population structure is present within a germplasm col-

lection.

The multiple QTL model that considered population

structure (i.e., the full model) could suppress both false

positives and false negatives more effectively than the

single QTL model that considered population structure

(i.e., model R2). With either the moderate (i.e., 0.5) or

strict (i.e., 0.9) threshold, the average FPR and FDR of the

full model were less than those of model R2. With the strict

threshold in particular, false positives were barely detected

(i.e., only 9 false positives in 100 simulated datasets). This

indicates that the multiple QTL model can control the false

positives better than the single QTL model. Meanwhile, the

FNR of the multiple QTL model with either threshold was

also smaller than that of model R2, indicating that the

statistical power in detecting QTLs can also be enhanced

by simultaneously taking multiple QTLs into account in the

model. Moreover, the error of estimation of genetic effects

(i.e., RMSE) was smaller in the multiple QTL model with

either threshold than in the single QTL models. These re-

sults indicate that the multiple QTL model has statistically

desirable attributes over the single QTL model for appli-

cation to the whole genome association mapping. Thus,

Bayesian methods for identifying multiple QTLs can be

powerful tools for the whole genome association mapping

even when complex population structure is present in data.

The multiple QTL model that considered population

structure (i.e., the full model) could suppress FNR, FPR,

FDR, and RMSE to a greater extent than the multiple QTL

model that ignored population structure (i.e., model R3).

This indicates that population effects should be included

even in the multiple QTL model. In the application to ac-

tual data, the superiority of the full model over model R3

may be larger than that in the simulation studies. In the

simulation studies, all simulated QTLs were located just on

the marker loci: that is, the effects of the QTLs could be

fully explained by the effects associated with the marker

genotypes. In the application to actual data, however, the

effect of QTLs cannot always be fully explained by marker

genotypes. Moreover, in the actual data there may be true

polygenic effects. That is, there may be many loci that have

effects too small for their detection as QTLs, but that

nevertheless lead populations to have different means. In

the full model, genetic variance that is not associated with

the marker loci (i.e., polygenic variance and/or genetic

variance due to QTLs that are not closely linked to the

marker loci) can be absorbed by the population effects

included in the model. In our simulation studies, we also

simulated the population effects explaining about 20% of

phenotypic variance. The variance due to population ef-

fects, however, may be much larger in the actual data than

in our simulated datasets, as is the case for WID in this

study.

We tested both moderate (i.e., 0.5) and strict (i.e., 0.9)

thresholds in deciding on significant markers on the basis

of MCMC samples. As described above, the average FPR

and FDR were less than 2% with the strict threshold. Be-

cause of the trade-off relationship between false-positive

and false-negative rates, the average FNR was not as small

(37.1%) with the strict threshold. With the moderate

threshold, in contrast, the average FNR was 19.4%, but the

average FPR and FDR were larger than with the strict

threshold. In the practical application of our model, an

appropriate threshold, including an intermediate one, can

be chosen in accordance with the intended purpose in

consideration of the trade-off relationship between false-

positive and false-negative rates. As described later, the

procedure for controlling FDR (Benjamini and Hochberg

1995) may be used for choosing an appropriate threshold.

A trade-off relationship between false-positive and

false-negative rates also exists for single QTL models.

When we regarded a marker as significant at P < 0.01, the

average FNR became small (29.1%) in model R2 (data not

shown). This value was less than the average FNR of the

full model with the strict threshold. The average FPR and

FDR, however, became 3.49 and 43.0%, respec-

tively—obviously larger than those of the full model.

When the FDR reaches 43.0%, nearly half of the positives

are false. In such a situation, QTL detection cannot be

reliable. In contrast, when we regarded a marker as sig-

nificant at P < 0.0001, the average FPR and FDR became

small (0.160 and 5.55%, respectively) in model R2, al-

though the values were still larger than those of the full

model with the strict threshold (data not shown). In this

case, the average FNR became large (60.6%) in model 2,

indicating that over half of the QTLs would be overlooked.

Table 3 Locations and estimated parameters of significant markers

for traits related to the size and shape of milled rice grains

Trait Chromosome Locationa Marker cb bc

LEN 3 68.6 R250 0.982 –0.27 ± 0.06

5 45.0 R569 0.996 –0.19 ± 0.04

11 20.7 G1465 0.946 –0.18 ± 0.05

WID 1 99.9 R1928 0.995 0.13 ± 0.03

5 2.9 C597 0.914 –0.10 ± 0.03

LWR 5 45.0 R569 0.987 –0.11 ± 0.02

LEN length of milled rice grain, WID width of milled rice grain, LWR
length to width ratio of milled rice grain
a Marker location estimated on the genetic linkage map constructed

by Kurata et al. (1994)
b Mean of posterior distribution of ck

c Mean and standard deviation of posterior distribution of bk. In the

calculation of mean and standard deviation, we took into account

MCMC samples in which ck = 1
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In the real data analyses, we estimated EFDR by

determining a P value corresponding to a specified value of

the mean of the posterior distribution of ck based on the

empirical null distribution obtained from the simulation

analyses. With this procedure, we can also control FDR at a

specified level as described by Benjamini and Hochberg

(1995). First, P values are computed from the mean of the

posterior distribution of ck for all K markers. Let P(1) £ P(2)

£ ��� £ P(K) be the ordered P values. Next, the largest i is

determined for which PðiÞ � iq�

K ; where q* is the FDR to be

controlled at. Finally, the mean of the posterior distribution

of ck corresponding to P(i) is obtained on the basis of the

empirical null distribution. This value is then the threshold

that controls FDR at q*. This procedure may be a good

criterion for choosing an appropriate threshold for our

model.

As described by Yu et al. (2006), a model that considers

both relatedness among accessions and population structure

may further suppress false-positive and false-negative

rates, since the relatedness is expected to account for finer-

scale variations caused by different genetic backgrounds

than variations caused by the population structure. A

mixed-model approach in which the pedigree-based relat-

edness is taken into account has been successfully applied

to the whole genome association mapping studies in maize

(e.g. Parisseaux and Bernardo 2004; Zhang et al. 2005a).

As described by Yu et al. (2006), relatedness can be also

estimated on the basis of marker polymorphisms by using

methods such as that proposed by Ritland (1996). In this

study, however, we did not incorporate relatedness in our

model. In our data, the allele frequencies of each marker

locus differ from population to population; it is therefore

necessary to take into account the difference in allele fre-

quencies when we estimate relatedness between acces-

sions. In the Bayesian clustering analysis, the allele

frequencies of each locus in each population were also

estimated. It may be possible to estimate the relatedness in

the presence of population structure by using the infor-

mation on allele frequencies and population structure (i.e.,

Q matrix) estimated by the Bayesian clustering analysis.

Future work will be needed to develop a model that con-

siders both relatedness and population structure in the

whole genome association mapping of the rice germplasm

collection.

In our model, only marker positions were considered as

putative QTLs. In practice, however, linkage disequilib-

rium between marker and QTL alleles is not complete, and

this incompleteness may cause errors in association map-

ping analyses. In our model, there is also an implicit

assumption that the genetic effect of each marker position

can be modeled with the same parameter in all populations.

In practice, however, the effect may differ between popu-

lations, since both the pattern and degree of linkage dis-

equilibrium between marker alleles and QTL alleles may

also differ between populations. A more complex model

that can deal with these discrepancies between assumption

and practice may further suppress false-positive and false-

negative rates, and should be addressed in future.

We analyzed the size and shape of milled rice grains as

real trait data. We found three, two, and one significant

markers, respectively, for LEN, WID, and LWR of milled

rice grains. Of these, marker R569 on chromosome 5,

which was significant in terms of LEN and LWR, may be

linked to a QTL reported previously (Wan et al. 2005,

2006). In this region, we have also found a QTL for grain

shape in a QTL analysis using BC1F10 lines of Koshihikari/

Kasalath//Koshihikari (unpublished data). Marker R250 on

chromosome 3, which was significant in terms of LEN,

may also be linked to a QTL that has been detected around

the centromeric region of chromosome 3 (Huang et al.

1997; Redona and Mackill 1998; Tan et al. 2000; Kubo

et al. 2001; Aluko et al. 2004; Li et al. 2004; Wan et al.

2005). The location of R250, however, does not completely

correspond to the genomic region in which the candidate

gene of the QTL was narrowed down (Wan et al. 2006, Fan

et al. 2006). The discrepancy in the estimated location may

be due to incomplete linkage disequilibrium between

marker alleles and QTL alleles, as described above. The

resolution power in the location estimation may be im-

proved by the use of highly dense markers. Recently, a

large number of single nucleotide polymorphisms (SNPs)

have been positioned on the rice genome; thus, the level of

linkage disequilibrium between marker alleles and QTL

alleles may become reasonably high in the near future.

To perform a genome-wide QTL scan in association

mapping studies, it is generally necessary to have a large

number of markers distributed across the entire genome.

This study, however, covered only 179 RFLP markers,

which may be much less than the desired number of

markers for a moderate-scale association mapping study.

To clarify the usefulness of our approach in a larger-scale

association mapping study, we analyzed one simulated

dataset of 1,000 markers, in which randomly generated

genotype data on 821 markers were added to the real data

on 179 RFLP markers, and 10 QTLs were simulated at

random positions on the 179 RFLP markers. As result, the

full model with the moderate threshold detected 6 out of 10

simulated QTLs while achieving low FPR (0.8%) (data not

shown), indicating that our approach could work on a

dataset of 1,000 markers. At this analytical scale, however,

our approach required a long time. For example, with our

system (J2SE v5.0 + Red Hat Enterprise Linux ES + Intel

Xeon 3.0 GHz), it took about 140 h to analyze the dataset

of 1,000 markers, whereas it took about 5 h to analyze the

dataset of 179 markers. To speed up the analysis time, we

need to develop a more efficient MCMC sampling algo-
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rithm. At the present time, a practical solution for this

problem is to use the following two-step approach. First, an

analysis with model R2 is performed over all markers.

Second, an analysis with the full model is performed over

the markers that are regarded as significant at the first step.

Since the first step requires little time but can reduce the

number of markers tested in the second step, it may be

possible to analyze a dataset of tens of thousands of

markers by this two-step approach within a practical time

period. In order not to miss true QTLs in the first step, a

moderate significance level (say, P < 0.01) may be

appropriate in the first step analysis. False positives in the

first-step can be eliminated in the second-step analysis.

Association mapping has generally not been attempted

in rice, with a few exceptions (e.g., Zhang et al. 2005b).

This reluctance to use association mapping in rice may be

largely due to the fact that rice is a highly selfing species

and is expected to have high levels of population structure

in light of its breeding history. Our results indicate that

association mapping would have good prospects in a highly

selfing species such as rice if a proper method were to be

adopted. Since accessions in the rice germplasm collection

are inbred, they can be easily propagated and shared by

many researchers. This enables us to accumulate large

amounts of phenotypic data on various traits observed in

various environments. Thus, the whole genome association

mapping using the rice germplasm collection will be a

useful tool, not only for detecting candidate genes, but also

for detecting pleiotropic genes and genes showing inter-

action with the environment. There are many highly selfing

crop species other than rice. The Bayesian method pro-

posed here will be useful for the whole genome association

mapping of them too.
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